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Coordinate systems and analytic expansions for three-body 
atomic wavefunctions: I. Partial summation for the Fock 
expansion in hyperspherical coordinates 

P C Abbott and E N Maslen 
Department of Physics, University of Western Australia, Nedlands 6009, Western Australia, 
Australia 

Received 27 February 1986, in final form 22 July 1986 

Abstract. A survey of analytic techniques for solving the two-electron atomic Schrodinger 
equation is presented. The hyperspherical formalism is introduced and specialised to the 
case of two electrons and zero total angular momentum. Following Fock, the Schrodinger 
equation is then converted to an infinite set of coupled second-order differential equations 
by proposing an expansion including logarithmic functions of the interparticle coordinates. 
The equivalence of the techniques of Pluvinage and Hylleraas to the Fock expansion is 
demonstrated and the method for solution is illustrated. The extension to states of arbitrary 
angular momentum and excited states is indicated. Methods for simplifying the recurrence 
relation generated by the Fock expansion are used to determine the highest power logarith- 
mic terms to sixth order. Finally, the wavefunction for S states is given to second order 
as a singly infinite sum of Legendre polynomials. 

1. Introduction 

It is commonly believed that helium, the second simplest of atoms, does not permit 
exact solution of its Schrodinger equation (SE) .  This belief reflects earlier difficulties 
in solving the SE analytically due to non-separability. However, this pessimism is not 
justified. Although Bartlett et a1 (1935) showed that the 'S-state helium wavefunction 
could not be expanded into an analytic series of the interparticle coordinates, Bartlett 
(1937) demonstrated the existence of a formal expansion including logarithmic func- 
tions of the interparticle coordinates. Fock (1954, 1958), after introducing hyper- 
spherical coordinates 

proposed that, in the neighbourhood of r = 0, the exact eigenfunctions have the Fock 
expansion (FE)  

Fock then substituted (2) into the SE obtaining a recurrence relation, involving differen- 
tial operators, for the angular functions qkP and obtained solutions for k = 0 and 1 in 
agreement with those of Bartlett ( 1937). He constructed hyperspherical harmonics 
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2044 P C Abbott and E N Maslen 

( H H )  which form a complete orthonormal set suitable for expanding q k p  and demon- 
strated the appropriate order for solving the recurrence relation. The q k p  are not 
determined completely by the recurrence relation: the remaining degrees of freedom 
are removed by imposing the physical boundary conditions. Fock also determined 
Green functions necessary for expressing the coupled system of differential equations 
in an equivalent integral form. 

Macek (1967) proved that for r < ( - 8 E ) - ' I 2 ,  where E is the energy, the FE is square 
integrable over a and 6. Leray (1982a, b, 198t, 1984) sketched a proof of the necessity 
and sufficiency of the FE by extending Fuchs' theorem. Recently Morgan (1986) has 
rigorously proved that, for any value (even complex) of E, the SE has infinitely many 
solutions, each possessing a FE convergent for all finite r. 

Ermolaev (1958) and Demkov and Ermolaev (1959) studied the extension of the 
FE to an arbitrary system of charged particles and to states of any symmetry. Ermolaev 
(1961) and David (1975) extended the work of Fock obtaining q2,, by expansion into 
HH. Algebraically summing the series produced by their technique is difficult. Some 
results are given in 8 5 of this paper, A table of the known Fock coefficients is given 
by Abbott (1986). 

Variational work using conventional expansions containing exponential and poly- 
nomial functions of the interparticle distances have been studied since the classic work 
of Hylleraas (1929). However, as Bartlett et a1 (1935) showed, these analytic expansions 
cannot satisfy the SE. Variational studies incorporating In( r ,  + r2) ,  which is closely 
related to In r, have been presented by Hylleraas and Midtdal (1956, 1958), Frankowski 
and Pekeris (1966), Frankowski (1967) and recently by Freund et a1 (1984). Variational 
expansions using the exact form of the FE (2) have been presented by Ermolaev and 
Sochilin (1964, 1968) and Sochilin (1969). The results of Hylleraas and Midtdal were 
inconclusive but all later works show a dramatic improvement in the convergence of 
the energy (and other operator expectation values), with respect to the number of 
variational parameters, upon the inclusion of the logarithmic terms. 

The incorporation of the FE in perturbational work has been discussed by Ermolaev 
(1968) for helium and by Tulub (1969) and Tulub e? a1 (1971) for the van der Waals' 
interaction of two hydrogen atoms. 

An alternative technique to the FE is the conversion of the SE into an infinite set 
of coupled second-order differential equations, using matrix methods to solve a trun- 
cated set of these equations (Bartlett 1937, Macek 1968, Knirk 1974a, Fano 1976, 
Haftel and Mandelzweig 1983, Feagin et a1 1985). Knirk (1974b) and Klar (1985b) 
demonstrated the equivalence of the (non-truncated) matrix techniques to the FE. 

However, the above analyses usually incorporate the adiabatic approximation and, as 
one solves only a truncated set of these equations, the results are no longer exact. In 
this paper we focus on exact solutions, so variational, perturbational and matrix 
techniques are not considered. It is emphasised that approximating, at any stage of 
the calculation, prevents algebraic simplifications that occur only with exact wavefunc- 
tions. This paper and the succeeding one demonstrate that with persistence, and 
utilising complementary approaches, many of the algebraic hurdles may be resolved. 
The outlook for simple closed form helium wavefunctions is more favourable than is 
generally believed. 

This paper is organised as follows. In § 2, hyperspherical coordinates for treating 
the N-electron atom are introduced, with particular emphasis on the case N = 2. The 
HH associated with the generalised angular momentum operator, which is the quadratic 
Casimir operator for SO( n), where n = 3 N, are introduced. The properties of scalar 
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HH for N = 2 are summarised. A plausibility argument for the FE is presented in 9 3 
and its relationship to techniques of Pluvinage (1950) and Hylleraas (1956, 1958, 1960) 
is demonstrated. (The complete works of Hylleraas are collected in Hylleraas (1968).) 
In Q 4, tools for solving the FE are summarised. Applications are described in 0 5. The 
reduction and the general structure of the wavefunction is examined in Gottschalk et 
a1 (1987, to be referred to hereafter as 11). 

2. Coordinate systems for two-electron atoms 

After removing the motion of the centre of mass, six coordinates are required for 
two-electron atoms. These may be decomposed into three external coordinates, describ- 
ing the orientation of the triangle formed by the nucleus and the two electrons, and 
three internal coordinates, specifying the size and shape of this triangle. This decompo- 
sition is examined in more detail in 11. 

For S states only the three internal coordinates are required. Several factors should 
be considered when choosing these coordinates. Different systems may be more 
favourable for particular aspects of the analysis. For example, interparticle coordinates 
r l ,  rz, rI2 ( IC)  are intuitively obvious and the asymptotic forms as rI or r2+m are 
simply expressed in this system (Morgan 1977). Spherical polar coordinates rl , r2, 0 
( SPC) allow simple expansions in terms of Legendre polynomials. Elliptic coordinates 
s = rl + r2, t = rl - r2, U = rI2 (EC)  display the symmetry of the wavefunction and 
hyperspherical coordinates ( HC), defined below, are mathematically expedient for 
displaying general properties of the solution. The interplay between different solutions 
and the advantages of working with more than one coordinate system are stressed. 

2.1. Hyperspherical coordinates 

The partitioning of r into a hyperradius r defined by 

and a set of n - 1 hyperangles collectively denoted by R is general for all hyperspherical 
systems. As shown using tensor methods by Granzow (1963), the Laplacian becomes 

where A’, is the quadratic Casimir operator for SO( n), termed the generalised or grand 
angular momentum operator (GAM),  and depends only on R. Expanding the first term 
of (3), the Laplacian is seen to be homogeneous of degree -2 in r. We now summarise 
the general properties of HC. The n-dimensional volume element is 

n 

d Vn = n dxi = d r  d S  = r n - l  d r  dR 
I = 1  

where d S  is the element of surface area. The volume of an n-dimensional sphere is 
T n / 2  

~ ( n / 2 + 1 )  r n  
v, = 
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and also 

Now consider a harmonic homogeneous polynomial HA ( r )  of degree A. Homogeneity 
implies 

~ , ( r )  = r A H A ( u ) =  rAY,(R) ( 5 )  

where U is an n-dimensional unit vector and there exists a one-to-one correspondence 
between U and 0. The H , ( r )  are called the solid harmonics: throughout this paper, 
upper case bold symbols denote a solid function and light symbols denote the associated 
spherical function related, in general, by ( 5 ) .  

Applying the Laplacian (3) to HA ( r )  and using equation ( 5 )  and harmonicity yields 

A;(R) Y ,  (a) = A ( A  + n - 2) YA (a) .  (6) 

The eigenfunctions Y,(R) of GAM are the H H .  Equations (3) and (6) generalise the 
familiar SO(3) results. It is emphasised that A; is a (partial) differential operator and 
the H H  are selected from all possible eigenfunctions of (6) by requiring them to be 
finite, single-valued and continuous over R. 

Scalar or S-state HH satisfy the additional requirement of having zero total angular 
momentum, L=O, and are invariant with respect to spatial rotations. The total 
(ordinary) angular momentum is specified by 

L2Y: ( f l )  = L(L+l)Y:(R) .  ( 7 )  

H H  for L > 0 are constructed either by (i) standard Clebsch-Gordan coupling pro- 
cedures (Zickendraht 1965) or (ii) by directly solving (6) with the constraint (7), where 
the external coordinates are chosen to be the Eulerian angles: here (Edmonds 1960) 

aa a y  

and the eigenfunctions associated with (8) are the rotation matrices, DL,,(e, p, y ) .  
The GAM for (ii) is given explicitly by Smith (1962), Zickendraht (1965), Tkachenko 
(1978), Klar and Klar (1980) and Johnson (1983). 

Using the Green theorem in n dimensions (Gradshteyn and Ryzhik 1980) 

Choosing V, to be the unit sphere, aVn = R ,  d S = d R  and realising that normal 
derivatives become radial derivatives, 

Hence the H H  are orthogonal and may be constructed to be orthonormal. For each 
A, there exists a set of degenerate H H  distinguished by the label [v]. Using (9) one 
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A[vl 

and hence the H H  are complete. 

2.2. N = 2 hyperspherical coordinates 

To make the preceding discussion more concrete we consider helium ( N  = 2). Introduc- 
ing the hyperangle a E [0, T ]  (not to be confused with the Eulerian angle) by 

rl  = r cos(a/2) r2 = r sin(a/2) r I 2  = r (  1 -sin ct cos (10) 

one obtains the set of HC studied by White and Stillinger (1970) and Mar (1985a). 
The Laplacian is 

i a  a 1 
h 6 = 7  - rs----A:(a,  e )  r ar ar r2 

where 

The H H  associated with (11) are 

Ykl(a, e)  = Nkl sin’a~‘j$2~(cos a ) ~ , ( c o s  e )  k = 0,2 ,4 , .  . . , CO; I = 0,1,2, .  . . , k/2 

(12) 

where the C r ’ ( x )  and S ( x )  are, respectively, Gegenbauer and Legendre polynomials 
(Abramowitz and Stegun 1972). The appropriate volume element is 

dV6= rs d r  d 0  dR = v2 sin2 a dct sin 0 d e  r E [O, CO), E [O, TI, e E [O, ..I 
(13)  

where the T’ ensures that dR = 7r3, in agreement with (4). The normalisation constant 
Nkj iS 

so that 

Yk.(a, 6 )  Y k * l ’ ( ( Y ,  e )  dR = Skk’8//’ I 
Equation (10) may be unified by writing 

r, = rc,( 1 - x,)I/’ 

where 

(16) 

(17) x, = cos a cos a,  +sin a sin a,  cos 8 cos 8, 
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and 

- 2-1/2 

- 2-1/2 
1 7r 

2 0 
12 a/ 2 0 1 

Following Abbott and Maslen (1984) and Klar (1985a) the addition theorem may be 
written 

where 

cos y = c o s  a cos &‘+sin a sin a ’cos  8 cos 8’. 

Interchanging particles 1 and 2 is equivalent to replacing a by 7r-a. From the 
symmetry of the Gegenbauer polynomial 

Yk/(r-(Y, 8)=(-i)k12-’Yk/(a, 6 ) .  (20) 

Any suitable function of r, a, 8 may be expanded into H H  since they form a complete 
set: 

The eigenvalues of A* are given by (6): 

A 2 ( a ,  8 )  Yk/(a, 8 )  = k ( k + 4 )  Yk/(a7 6 )  (21) 
with degeneracy k/2+ 1. The unnormalised H H  and the associated solid harmonics 
given by (12) and (14) are listed in table 1. 

Table 1. Normalisation constants, unnormalised hyperspherical harmonics and the associ- 
ated solid harmonics. 

0 0  1 
2 0  1 
2 1  4 
4 0  1 
4 1  3 
4 2  8 
6 0  1 
6 1  3 

6 2  9 

6 3  
8 0  1 
8 1  
8 2  6 
8 3  2 
8 4 

- 16 

1 
2 

- 

1 
2 cos a 
sin a cos 0 
4 cos2 a - 1 
4 cos a sin a cos 0 
f sin‘ a (3 cos’ e - 1) 
4 cos a (2 cos’ a - 1)  
2 sin a cos e (6  cos’ (I - 1)  
3 cos a sin’ a ( 3  cos2 e - 1)  
f sin3 a cos e ( 5  cos’ 6 - 3 )  

4 cos a sin a cos 0 (8 cos2 a - 3 )  
I sin a (8 cos’ a - 1)(3 cos2 0 - 1 )  
4 cos a sin3 a COS e (5 COS’ e - 3)  

sin a (35 cos4 e - 3 0 ~ 0 ~ ~  e + 3 )  

16 cos4 (I - 12 cos2 a + I 
3 . 2  

1 ’ 4  
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For future reference we state the combination theorem for the H H  defined by 
equation (12). Following Judd (1975) we write 

with 

( 2 1 + 1 ) ( 2 1 ' + 1 ) ( 2 1 " + l ) ( k + 2 ) ( k ' + 2 ) ( k " + 2 )  
8n3 

The [ : : : I  may be termed a 3-k coefficient (Shibuya and Wulfman 1965, Del Aguila 
1980, Mukhtarova and Efros 1983, Wen and Avery 1985), in analogy with the 3-j  
coefficient (: : :) and the 9- j  coefficient { :  i i}.  The 3-k coefficient is invariant under 
permutation of its columns. Both (k, k', k") and (1, l ' ,  l " )  obey triangular conditions 
and, further, both l+l '+l"  and ( k +  k'+ k")/2 are even. Equations (22) and (23) 
simplify the expression for the matrix element of the Coulomb potential used by Feagin 
et a1 (1985). 

2.3. Fock hyperspherical coordinates 

Let us contrast the treatment above with that of Fock (1954,1958). Following Hylleraas 
(1928,1929) and Gronwall(l932,1937), Fock commenced with the internal coordinates 
r l ,  r2, 8 and defined the new variables 

x = 2r,r2 sin 8 cos q5 U = r: - r: (24) 

where 4 is introduced as a device for transforming from R3 + R4. (For a similar example 
of such use of a non-bijective transformation see Kibler and Negadi (1984).) Fock 
introduced 4 so that the correspondence to his classic paper on hydrogen in momentum 
space (Fock 1935) was transparent. Setting 

y = 2r,r2 sin 8 sin q5 z = 2r1r2 cos 8 

R = ( x 2 +  y 2 +  z 2 +  = r:+ r2 2 -  - r2 (25) 
equation (24) becomes 

x = R sin a sin 8 cos 

z = R sin a cos 0 

y = R sin a sin 8 sin q5 

U = R COS a (26) 
where 

sin a = 2rl r2/ r2 COS a = (r: - r:)/ r2. 

Equations ( l ) ,  (10) and (27) are consistent and (26) applies to SPC in four dimensions 
(Vilenkin 1967). Hence 

dV4= dx dy dz du = R3 d R  sin' a d a  sin 8 d 8  d 4  

R E [O, 00) a E 10, TI e E [O, TI 4 E [O, 2571 
and 5 d n  = 2 n 2  in agreement with (4) for n = 4. By standard techniques (3) becomes 
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where 

and / * (e ,  4) is the standard angular momentum operator. Since 4 is not physically 
relevant it is seen, by comparing equations (11) and (28) and using (3) and ( 2 5 ) ,  that 

4 ~ : ( ~ ,  e, 4) = A&Y, e )  4RA4z A6. 

This result is given by Ermolaev (1958), who points out that the scalar H H  in six 
dimensions are equivalent to the four-dimensional H H t .  Equivalently, the explicit 
expressions for A i  and A: agree (up to a numerical factor) on disregarding derivatives 
with respect to the (unphysical) angle 4. 

These results illustrate the relationship between the Fock HC, which are restricted 
to three-particle S states, to HC that treat general N and L. 

3. Conversion of the Schrodinger equation to an infinite set of coupled second-order 
differential equations 

In order to solve the SE for N 3 2 it is often converted to an infinite set of coupled 
second-order differential equations. Since we do not adopt a truncated matrix 
approach, the results are still essentially exact. A brief discussion of the solution of 
this system of equations is given in § 3.4. One may also convert the SE to a homogenous 
integral equation in 3 N - 3  variables by means of an appropriate Green function 
(Bartlett 1937, Fock 1954, 1958, Bellman and Adomain 1985). This approach is not 
considered in this paper. 

3.1. Schrodinger equation 

In atomic units, the SE for N particles, in the field of an infinitely massive nucleus, is 

( - i A +  V ) ' P = E ' P .  ( 2 9 )  

Restricting attention to N = 2, the Coulomb potential for a system of nucleus charge 
Z, and charges Z1 and Z2 is 

PI P2 P I 2  V=-+-+-  
rl r2 r12 

PI = ZZI P2 = zz2 P12=Z1Zz. 

We are especially interested in the cases Zl = Z2 = -1, corresponding to the helium 
isoelectronic sequence (HIS),  and in p12 = 0 which corresponds to the case of indepen- 
dent electrons. 

3.2. p,2 = 0: S-state product wavefunctions 

With pI2 = 0 the SE (29) is separable and the solutions are simply product hydrogenic 
wavefunctions. Unnormalised hydrogenic wavefunctions may be written 

'PnIm(r3 6, 4)  = Rndr)Y lm(6 ,  4)  

t We thank a referee for drawing our attention to this paper. 
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where 

R,, ,(r)=p1e-p'2,Fl[  l + l - n  21+2 ; P] P = n .  -2pr  

Y,,,, are the spherical harmonics (Normand 1980) and ,F, is the confluent hyper- 
geometric function (Abramowitz and Stegun 1972). 

For p1 = p2 the potential becomes symmetric and Y has definite parity. States of 
total orbital angular momentum L and spin S are formed by the standard coupling 
procedure 

q r l ,  r2) = C C i':ri2M [ q n ,  ml (rl )Yn2/2m2(  r2)  + (- 11'9 nI Ilm, ( r2)Y n,r,m,( rl) I 
m1m2 

labelled according to the conventional spectroscopic notation ''+"L. For S states, 
L = M = 0, requiring I ,  = 1, = 1 and m, = -m2  = -m. The sum over angular variables 
becomes the standard addition theorem: 

Thus product wavefunction for S states may be written 

*;;,l(rl, ~ * ~ ~ ~ ~ n , l ~ ~ l ~ ~ ~ , r ~ ~ 2 ~ + ~ - ~ ~ S ~ , l l ~ ~ 2 ~ ~ n 2 l ~ ~ , ~ 1 ~ , ~ ~ ~ ~  0). (32) 
Expanding (32) using (3 l ) ,  one obtains the wavefunction to lowest order in the variables 
r , ,  r2 and rI2 (Gottschalk and Maslen 1985). The extension to general L, M is 
straightforward using the results of Nikitin and Ostrovsky (1985). From table 2 it is 
clear that, for the lowest order of each independent-particle wavefunction, there exists 
a corresponding S-state H H  tabulated by k and 1, as in table 1. This correspondence 
is important in relation to the excited states and arbitrary coefficients, discussed in 
§§ 3.3 and 3.5. 

3.3. Generalised power series expansion 

After the SE for hydrogen had been solved by the method of Frobenius, it was natural 
to attempt a similar treatment for helium. However, Bartlett et a1 (1935) demonstrated 
that a power series solution did not exist in that case. Pluvinage (1950) and Hylleraas 
(1956, 1958, 1960) considered the generalised power series expansion 

30 

q =  C wk. (33) 
k = k '  

Table 2. Lowest order of S-state independent-particle wavefunctions and the corresponding 
hyperspherical harmonics. 

State Wavefunction to lowest order k l  

n l s n 2 s ' s  r" 0 0  
n,sn2s 3~ ri  - r: 2 0  
nlPn2P's I 2  

nIPn2P 3s ( r T -  r i ) ( r 2 - r ; 2 )  4 1  
2 1  

n,dn2d IS 3 ( r 2 - r ; 2 ) 2 - 4 r ; r ;  4 2  
n,dn2d 'S ( r ; - r ; ) [ 3 ( r 2 -  r ? 2 ) 2 - 4 r ; r : ]  6 2  
n,fn,f ( r 2 - r : 2 ) [ 5 ( r 2 - r : 2 ) 2 -  12r;r:l 6 3  

Note that n ,  , nz > I and that n ,  # n2 for 'S states. 

r 2  - r 2  
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where each q k  is homogenous of degree k in the radial variable r. All q k  ( k  < k ' )  
are identically zero, where k' is presently unspecified. Since the Laplacian is 
homogenous of degree -2 and the Coulomb potential of degree -1, substitution of 
(33) into (29) shows that the SE is formally equivalent to the infinite set of second-order 
(partial) differential equations: 

A q k c  = 0 (34) 
A*,,+, = 2 v q k .  (35) 
A q k  =2Vqk-1-2Eqklk_2= 1 k - 2  ( k s  k't-2) (36) 

where z k - 2  is the inhomogenous term of equation (36) and is of degree k - 2 .  
The analysis leading to equation (6) indicates that the general solution to (34) for 

S states is simply the solid harmonic of degree k' tabulated in table 1. Note that only 
harmonics of even degree k' can arise. 

The choice of a particular k' leads to an excited S state as specified by table 2. For 
instance, commencing with Y2 = r i  - r: (k '  = 2) corresponds to the n,s n2s 3S states 
(Hylleraas 1958, Pluvinage 1982). We are particularly interested in the case k' = 0, the 
ground state nlsn2s IS, where Yo= 1. Equation (35) is easily solved. It may be verified 
that 

Wl = PI r1+ P2r2 +tCL12r12 (37) 
satisfies (35). Equation (36) thus becomes 

We solve (38) formally by expanding both q2 and Io into H H .  Hence 

q2=c Rk?(r)Y,~(a, 6 )  
nl 

and 

(39) 

nl 

where the H H  are defined by (12). Applying the Laplacian given by equations (11) 
and (21), using (38) and assuming suitable convergence of (39) so that we can 
differentiate term by term, we see that 

L,Rk;](r) = I$' (41) 
where 

Following White and Stillinger (1971), the general solution to (41) can be written down 
immediately by using the identity 

Lnrk l n P r = r k - 2 [ ( k - n ) ( k + n + 4 ) l n P r + 2 p ( k + 2 ) l n P - 1  r + p ( p - 1 )  InP-' r]. (43) 
Hence 

-1$'r2 
( n  -2) (n+6)  

R$]( r)  = n Z 2  

R\:]( r )  = QZ$]r2 In r + A2,r2 (44) 
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where A21 ( I  = 0, 1) is arbitrary and multiplies the physical solution to the homogeneous 
equation (41). R S 1 ( r )  is homogenous of degree 2 which implies that Y2 is likewise, 
as required for the expansion (33): In r arises since the roots of the indicia1 equation 
associated with (41) differ by an integer (Boyce and DiPrima 1969). Moreover, In r 
may be considered to be formally homogeneous of degree 0 since its derivative with 
respect to r is homogeneous of degree - 1 (Leray 1984). Since all the RI;;] are deter- 
mined, so is Y2. However, the determination of the I::] in equation (40) is not 
completely trivial and the summation ofthe series (39) in its present form is algebraically 
difficult. Both problems are examined in later sections. 

We now examine equation (36) for k = 3 .  Using (44) and the fact that V is 
homogeneous of degree - 1 and contains H H  of all orders, we can write formally 

1 

AY3 = II = r InP r Ynl(a,  0) (45) 
p = o  nl 

where the I t l ;  are obtained by expanding I ,  analogously to (40). Expanding 9, 
similarly to (39) one obtains 

L,R$] = r I s i  + r In rZ[’l nl1. 

The solution is 

- r ’ (~[ , ’ ,b+  1511 In r )  - 101[,~],r’ 
( n  - 3)2( n +7)2’  

RI;‘,]( r )  = 
( n  - 3 ) ( n  $ 7 )  

Finally we examine k = 4. Using (36) we see that 
1 

AY4 = r2 InP r 1 I;?; Ynl(a,  e). 
p = o  nl  

Hence 

L , R ~ ]  = r21$i+  r2 In rI[n:]1. 

The solution is 

-r4(z9,+ 12; In r )  12r4z[,:; Rs1(  r )  = - n Z 4  ( n  -4) (  n + 8 )  ( n  -4)2( n + 8)2 

R$]( r )  = - &r4 In rI$?i - &r4 In rZ$i + hr4 In2 rZ$i + A41r4 

where A4I(I = 0, 1,2) is again arbitrary. The pattern is now clear: for each even k a 
new power In r of the form r k  (In r ) k / 2  is required. Associated with this is the appearance 
of k/2+ 1 arbitrary coefficients Akl ( 1  = 0,1,. . . , k/2). For odd k, no new powers of 
In r or arbitrary coefficients appear. In general we can write 

(46) w k  = E  R ~ ! l ( r )  Y n l ( a ,  0) 
nl  

where 

p = o  

Combining equations (33), (46) and (47) yields 
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By identifying 

we obtain 

Comparison with equation ( 2 )  shows that we have recovered the FE. Hence the methods 
of Fock, Pluvinage and Hylleraas are formally equivalent. The q k p  are given by (48) 
and, for each k, the method for constructing the ck,lp is as above. For example, from 
(44) 

- p 1  
n Z 2  nl 

C 2 n l o  = ( n  - 2)( n + 6) 

3.4. Comments on the Pluvinage- Hylleraas expansion 

We label any generalised power series expansion of the form (33) as the Pluvinage- 
Hylleraas expansion (PHE). Note that the FE (2) explicitly includes powers of In r in 
the expansion about the singular point r =0,  whereas the PHE (33) contains In r 
implicitly, since In r may be considered formally homogeneous of degree zero. 

Although the derivation of the PHE in § 3.3 is not rigorous, the FE (2) has been 
shown to be equivalent to the generalisation of Fuchs' theorem required when examin- 
ing the N-electron SE by Leray (1982a, b, 1983,1984) and Morgan (1986). Furthermore 
the solutions by either technique can be shown to be identical for each k. One infers 
that § 3.3 can be made rigorous. 

The extension to any excited state is obvious: the choice of the particular solution 
to equation (34), i.e. the value of k', determines the state. Note that the PHE only 
requires slight modification for states of total angular momentum L > 0, since L, does 
not depend on L. 

The treatment of § 3.3 hides the difficult task of computing the Z n l p .  From (36) we 
see that z k  contains vok+l. Expanding the potential (30) into H H  

and remembering equations ( 2 2 ) ,  (23), (46) and (47) we see that 

The I$; may be computed from (50). For an example of numerical work using this 
technique see Feagin et a1 (1985). In analytic work one avoids such calculations 
because of infinite series of 3-k coefficients in the parenthesis of (50). Techniques for 
avoiding this difficulty are presented in 0 4.2. 



Partial summation for the Fock expansion 2055 

It is important to realise that the system of equations (34)-(36) may be solved using 
any set of internal coordinates. In 5 3.3, the coordinates r, a, 8 and the associated 
Laplacian were utilised and the structure of the logarithmic terms emerged in a 
straightforward fashion. This illustrates the comment made in § 2, that HC are 
mathematically expedient for studying general properties of these systems. However, 
the SPC rl , r2, 8 are a more practical set of coordinates because they generate simplified 
expressions more directly. The SPC Laplacian is given in I1 and the W k  are expanded 
as 

instead of (46). Note that the expansion (51) helps circumvent difficulties associated 
with equation (50). The relationship between expansions in HC and SPC is made explicit 
by comparing equations (46) and (51) ,  using (12), yielding 

m 

This connection is examined in § 5.4. Results in the appendix indicate how (52) may 
be summed for certain R[,:](r). To simplify expressions obtained in HC one must be 
able to sum equation (52) for general RkY1(r). This is difficult and may be avoided by 
working in SPC, as shown in 11. 

3.5. Arbitrary coeficien ts 

In 4 3.3 there arose coefficients Akl that were not determined by the homogeneous 
differential equation. This general feature of differential equations also arises when 
solving, for example, the Laplace equation in N dimensions. In equations (34)-(36), 
for each even k, the homogeneous equation is just Laplace's equation, the solutions 
being the solid harmonics given in table 1 .  Note that the arbitrary coefficients are not 
connected explicitly to the potential. These arbitrary coefficients must be determined 
by imposing boundary conditions. In the case of the SE this corresponds to restricting 
the correct asymptotic form (Fock 1954, 1958, Ermolaev 1958, 1961, Demkov and 
Ermolaev 1959, Morgan 1977) as r + 00, or more practically as rl or r2 -+ 00. This ensures 
the normalisability of the wavefunction (Davis and Maslen 1982, 1983). This should 
be compared with hydrogen ( N  = 1): requiring the physical asymptotic form truncates 
the power series ensuring normalisability and simultaneously quantises the energy. 

Section 3.2 demonstrates the connection between separable wavefunctions to lowest 
order and the solid harmonics. One can see there that the ' S  state, for example, consists 
in part of a superposition of all allowed IS separable wavefunctions weighted so that 
the total wavefunction is normalisable. Note however that logarithmic functions, 
reflecting the behaviour at the triple coalescence, are not apparent in this approach. 

3.6. Recurrence relation for the Fock expansion 

To solve for the Y k p  it is usual to convert the FE to a differential recurrence relation. 
By substituting (2) into the SE (29) and using equations (42), (43) and (49) one obtains 
the Fock recurrence relation ( FRR) 

[A'- k(k+4)]Ykp = 2( k+2)(p+ l)ykp+l + (p -I- 1 ) ( p + 2 ) ~ k p + 2 - 2 V ~ k - l I p  + 2 ~ 5 9 k - 2 ~ .  
(53)  
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This set of coupled equations is solved in order of increasing k and decreasing p ,  since 
PkP=O for k < O  or p > [ k / 2 ] .  

In previous treatments (Ermolaev 1961, David 1975, Pluvinage 1982) the potential 
(30) was made symmetric by choosing pl = pz= -Z. For a symmetric potential the 
wavefunction must be either symmetric or antisymmetric. In what follows the treatment 
of the symmetric and antisymmetric states is unified. By using the general potential 
(30 )  we may examine states of arbitrary symmetry: states with specific symmetry 
properties can be projected out from the final result by specifying pl , p2 and pI2 and 
deleting the symmetric or antisymmetric parts as necessary. 

4. Techniques for solving the Fock expansion 

Techniques for reducing the complexity of terms arising in the FE are given below. 
These methods were initially demonstrated by Ermolaev (1961) and Pluvinage (1982) 
but are extended here. Applications are described in 0 5 .  

4.1. Expansion into hyperspherical harmonics 

Consider the general function 

C ( a ,  0)  =c CnrY,r(a, 0).  
nl 

Multiplying both sides by Yn,lp and integrating using ( 1 5 )  one obtains 

c,, = ~ ( a ,  0 )  m a ,  0) .  I 
We require, in particular, the expansion of 

(:) '( :)J( y )  
with i ,  j and m integers. Following Roberts (1965),  it can be shown that 

where r> = max{ r l  , r J ,  r< = min{ rl  , rz} ,  p = r, /  r> , 

( a ) , =  n ( a + i - l )  
i = l  

is the Pochhammer symbol and the *F,  is a Gaussian hypergeometric function. In the 
notation of Slater (1966, p 41)  the generalised hypergeometric series (GHS) is written 

where 
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From equation ( l o ) ,  r l  > r2 corresponds to a E [0, ~ / 2 )  and r ,  < r2 to a E ( ~ / 2 ,  r]. 
Due to this region dependence we examine first the integral for rl > r2 .  From equations 
(13 )  and (55) we evaluate 

c:;" = N,,,rr2 J: sin' a d a  1: sin 0 d0 ( : ) I (  : ) j (  y )  * ynI(a, 0).  

Using (56 )  and writing the Gegenbauer polynomial appearing in Y,,, as a hyper- 
geometric series, one obtains 

( n  + 2 ) ( l ) f ( - m / 2 ) f  n / 2 - l  ( I  - n / 2 ) , ( n / 2 +  1+2) ,  c w 2 ~ f ~ 1 m l  p = o  ( 1 ) , ~ + 3 / 2 ) ~  
cci;" = 21+2 

where the incomplete beta function is defined by (Abramowitz and Stegun 1972, p 263) 

and 

j + 3  
2 

a = l + p + q + -  
m + i + 3  ( 4 2 )  - 1 m even 

( m  + 1 ) / 2  m odd p=-- 4 qmax = { 2 

From the symmetry property (20)  of the H H  one finally obtains 

T$"= N,,, ( : ) f ( : ) ' ( y ) m Y , , , ( a ,  O)dfl=[C~;"+(-l)""-lC<;"]. (57 )  

The T$' required in 9 5 are given in table 3. 
The Coulomb potential (30 )  may be expanded as H H  by setting i, j and m = -1 in 

turn in (57) .  A more direct method exists when any two of i, j ,  m are zero. Using 
equations (16)-( 19) and following Abbott and Maslen (1984) one obtains 

where p = 1 ,  2, 12 and Ynr(a,,  0,) follows from equations (12)  and ( 1 8 ) .  Equations 
(57) and (58) are consistent. 

4.2. Polynomials of degree k in elliptic coordinates 

For each k, terms in Y k  are polynomials in the variables rl , r2 and r I 2 .  For example, 
Q1 given by (37 )  can be determined simply by assuming a polynomial of degree 1 in 
r l ,  r2 and r I 2  and solving for the coefficients. This idea is trivially generalised to all 
k. It is important to note that attempting to solve (35) ,  which led to PI, by expansion 
into H H  is compartively difficult (Knirk 1974b, Mar 1985b, Feagin et a1 1985). In 
general, proposing a polynomial of degree k in three variables leads to ( k  + 1 ) (  k + 2 ) / 2  
linear equations for ( k +  l ) ( k + 2 ) / 2  unknown coefficients. Using the EC given by 

s = rl + r2 t = r , - r 2  U = r I 2  
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Table 3. Table of the Ti? 

n I  i j m T i 7  n I i J m T X y  

0 0 0 0 0 1  6 0 1 2 1 2 1 4 5 ~  

2 0 -1 1 0 -8/3n 6 0 2 3 -1 3 1 7 0 ~  
2 0 -1 0 1 -213 
2 0 0 1 -1 - 2 1 3 ~  6 1 -1 4 1 44/75-214/105~ 

2 1 - 1  0 1 - 8 1 3 ~  6 1 -1 2 3 2 6 / 1 7 5 - 2 4 / 2 5 ~  
2 1 0 1 -1 213 6 1 -1 1 4 -128122571 

6 1 -1 0 5 - 2 4 1 3 5 ~  
4 0 - 1  3 0 S / S n  6 1 0  5 - 1  0 
4 0 -1 2 1 2 / 3 - 3 / 5 ~  6 1 0 3 1 -2/175x 
4 0 - 1  1 2 4 / 3 n  6 1 0 2 2 0  
4 0 -1 0 3 2/5 6 1 0 1 3 21175 
4 0 0 3 - 1  0 6 1 0 0 4 0  
4 0 0 2 0 0  6 1 1 4 - 1  2 / 1 5 - 1 2 / 2 5 ~  
4 0 0 1 1 -1JlSTr 6 1 1 2 1 2 / 7 5 - 2 2 / 5 2 5 ~  
4 0 0 0 2 0  6 1 1 1 2 128/1575x 
4 0 1 2 -1 - 1 1 3 ~  6 1 2 3 -1 - 2 / 2 5 ~  
4 0 1 1 0 -4/15n 

6 0 1 1 2 0  

6 1 -1 3 2 - 6 4 1 1 7 5 ~  

6 2 -1 4 1 -17/21+352/135n 
4 1 - 1  2 1 -9 /20+2/n  6 2 - 1  3 2 0 
4 1 -1 1 2 1 6 / 1 5 ~  6 2 -1 2 3 -4/15+208/315n 
4 1 -1 0 3 6 / 5 n  6 2 -1 1 4 -2048/4725~ 
4 1 0 3 - 1  -3/10n 6 2 -1 0 5 -4121 
4 1 0 1 1 1/20 6 2 0 5 - 1  - 8 1 6 3 ~  

4 1 1 2 -1 -1 /4+7/10n 6 2 0 2 2 0 
4 1 0 0 2 0  6 2 0 3 1 1/105 

6 2 0 1 3 - 1 6 / 3 1 5 ~  
4 2 -1 2 1 2/3-12/5n 6 2 0 0 4 0  
4 2 - 1  1 2  0 6 2 1 4 -1 -2/5+376/315ir 
4 2 - 1  0 3 2/5 6 2 1 2 1 -11/315+16/135n 

4 2 0 1 1 - 4 / 1 5 ~  
4 2 0 0 2 0  6 2 2 3 - 1  1/15-8/35n 
4 2 1 2 -1 7/10-4/3n 

6 0 -1 5 0 -8 /7n  6 3 - 1  3 2 0 
6 0 - 1  4 1 - 2 / 3 + 4 4 / 4 5 ~  6 3 - 1  2 3 5 2 / 1 7 5 - 6 4 / 7 5 ~  
6 0 -1 3 2 - 1 6 / 1 5 ~  6 3 - 1  1 4  0 
6 0 - 1  2 3 -2/5+26/105n 6 3 -1 0 5 -64/105n 
6 0 - 1  1 4 - 3 0 4 / 3 1 5 ~  6 3 0 5 -1 117 
6 0 - 1  0 5 -217 6 3 0 3 I -32/525n 
6 0 0 5 -1 1 1 4 2 ~  6 3 0 2 2 0  
6 0 0 4 0 0  6 3 0 1 3 4/175 
6 0 0 3 1 0  6 3 0 0 4 0  
6 0 0 2 2 0  6 3 1 4 -1 3 3 1 3 5 - 6 4 1 2 5 ~  
6 0 0 1 3 -2/105n 6 3 1 2 1 4 / 7 5 - 3 5 2 / 1 5 7 5 ~  
6 0 0 0 4 0  6 3 1 1 2 0  
6 0 1 4 -1 23/210n 6 3 2 3 - 1  9 / 3 5 - 3 2 / 7 5 ~  
6 0 1 3 0 8/105n 

4 2 0 3 -1 3/10 6 2 1 1 2 0  

6 3 - 1  4 1 88/75-1184/315n 
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leads to polynomials that are either symmetric or antisymmetric, only depending on 
the power of t .  The ( k  + 1)( k +  2)/2 equations decouple into 

( k +  l ) (k  + 2) + [ ( k  +2)/21 
4 2 

symmetric and 

( k +  l ) ( k + 2 )  - [(k+2)/21 
4 2 

antisymmetric equations simplifying the analysis. The symmetric and antisymmetric 
polynomials may be written explicitly as 

Note that, for even k, equation (59) contains HH of order k. The H H  vanish under the 
action of the Laplacian and may therefore be omitted, again reducing the number of 
coefficients. 

In contrast to VI, the polynomial terms do not generally account for the complete 
w k  for k >  1 .  One is faced with two alternatives: (a) choose the coefficients in (59) 
to put z k - 2  defined by (36) into its ‘simplest’ form; (b) the Coulomb potential is singular 
for rl , r2 or r12 = 0. By suitable choice of coefficients, the singular terms in z k - 2  arising 
from V may be removed (Ermolaev 1961). Any series expansion for z k - 2  will converge 
more rapidly. One may use the fact that r l r 2 r l Z  V is finite for finite values of rl , r2 and 
rI2 .  This is used in 0 5.2 for removing the singular pieces of Ik-2  by considering the 
following combinations: 

u ( s 2 -  t 2 )  =4rlr2r12 

u(u2-t2)=2rlr2r12(l-cos e) 
u ( s 2 - u 2 )  =2r,r2rI2(1+cos e) 
s ( u 2  - t 2 )  = 2rlr2r12(cos el +cos e,) 
t ( s 2  - u2)  = 2r lr2r12(cos  el -cos e,) 

where Oi is the angle between ri and rI2( i = 1 ,2 ) .  Since the cosine terms are finite for 
finite rl , r2 and r12,  the potential multiplied by any of (60) is also finite. One therefore 
chooses the coefficients in (59) so that only the combinations appearing in (60) arise. 

E = 2rl r2r ,2A 

In EC, it is helpful to modify the Laplacian using (Hylleraas 1932) 

= [ l 4 ( S 2 -  ?)(Z+Z+- +4su--4tu-+2(s2-t2) a a - a 
as2 at2 au2 ) as a t  au 

asau a t a u  
2t( u2  - s2) - a2  3. a’ + 2s( u2  - t 2 )  - - 

Using ( 1 1 )  it can be seen that 

Erk*(a ,  e ) =  k(k+ 4)]*(a, e). 
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Use of equations (5) and (61)  allows the FRR (53 )  to be rewritten in terms of EC. For 
example, k = 3 ,  p = 1 leads to 

S:JT31 = 4rlr2rI2V:JT2,. (62)  

Once :JT21 is determined, Y31 is easily found by use of equations (59 )  and (62).  

4.3. Solution of the Fock recurrence relation for highest power of In r 

The FRR ( 5 3 )  is easily generalised to include excited states and states of mixed symmetry 
by allowing k '> 0, where k' is defined in 0 3.3. Wavefunctions commencing at degree 
k' are denoted by a superscript k'. When k '=  0 it will usually be omitted from the 
notation. 

4.3.1. Even k. For even k, the highest power of In r is 

p' = ( k  - k ' ) / 2  

and the FRR for p' and p ' -  1 becomes 

Equation (63)  together with (21 )  implies that 

q f i p ,  = y ai;Ykl((Y,  e) 
/=0 

where the a:; are presently undetermined. The inhomogeneous term in a differential 
equation must be orthogonal to the solutions to its corresponding homogeneous 
equation. In our case the homogeneous solutions are the Y k /  ( I  = 0, 1 , .  . . , k / 2 ) ,  and 
the right-hand side of (64 )  must be orthogonal to each Y k l  separately. Noting that 
9 k - 2 p p - l  is analogous to qf&. and therefore contains only H H  with lower k, one obtains 

vqf:llp,-l Y k l ( ( Y ,  6 )  d n .  (66)  

The particular case a:l is examined by Bartlett (1937), Ermolaev (1961), Knirk (1974b) 
and Morgan (1978a, b). The fact that ail # 0 is equivalent to requiring logarithmic 
terms in the wavefunction. 

k '  

a:; = ( k  - k ' ) (  2 I  k + 2 )  

4.3.2. Odd k. F o r  odd k 

p'=  ( k -  k ' ) / 2 -  1 

and the F R R  for p '  becomes 

[A2-  k (  k+4)]9&, ,=  -2Vqf:Il p ,  (67)  

or equivalently, from (62 ) ,  

S : J T : ; , = ~ ~ , ~ , ~ , ~ V : J T : L ,  p , .  (68)  
The Ul:~,,. are computed by 0 4.3.1 and hence the '4':;. may be evaluated by the method 
of 0 4.2. 
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Expanding VYiLIp.-I in IC, it is seen that equation (66) becomes a sum of integrals 
of the type evaluated by equation (57) .  Moreover, since the Ykl have a definite parity 
under interchange of rl and r 2 ,  one only needs to consider either the symmetric or the 
antisymmetric terms of V q ~ ~ i p , . - l .  Hence the a i ;  are easily obtained. 

The above approach may be compared with the treatment of $ 3 . 3  leading to 
equation (44). There the coefficient of the highest power of In r was I:l/8, where 
was obtained by expanding Io into H H .  From equations (36), (39), (40), (44), (54) and 
(55) and comparison with equation (66), the methods are seen to be equivalent. 

5. Applications 

In what follows, the techniques of 0 4 are applied to obtain several q&. One example 
of § 4.2 has already been given: 9,, was stated in equation (37) .  

5.1. ?P& for ks6 

From 0 4.3, qzl is completely determined by equations (65) and (66). To evaluate (66) 
we expand the integrand as follows: 

where 

Ps = ( P l +  P2)/2 PA= (Pl-P2)/2.  

This factorisation clearly displays the symmetry of the terms in (69). Functions not 
depending on r,2 are orthogonal to P,(cos 13) for I >  1 .  Hence one sees that 

PsP12 (r1+r2)(L+L)Y21(a,  B)dR 
4 r12 2r1r2 

-””[ ( r l - r2 )  ( a20 - r12 )Y2,(a,  8 ) d n .  
4 TI2 2r1r2 

Evaluating these integrals by way of (57) ,  one obtains from (65) that 

By convention the ‘solid function’, for example W 2 1 ,  includes not only the dependence 
on r but also the appropriate power of In r. Once V21 has been determined, it is 
straightforward to obtain Wy31 by solving (62). More generally, the propagation of 
each H H  into the next k line may be obtained by the method of 0 4.2 applied to (67) 
or (68). The propagation of Ykl will be denoted WL$’,l and is tabulated in table 4. For 
the HIS the results in table 4 agree with those of Pluvinage (1982). 
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Table 4. Propagation of the H H  of order k into the next k line, Ykr + WL$':. 

2 0  
2 1  f ( k S + p A f  +p12')(r2-  +&hU3 

4 0  &s( -4s4+65s2f2 - 1 5 f 4 )  +$=,pAf( -4f4 + 65s2t2 - 1 5 ~ ~ )  
+&jp,2u(55r2u2 -45r4+60s2f2 -22u4) 
$ p s f (  15s4+ 14s2f2 - ~ O S ~ U ~ + ~ ~ * U ~  - t4)+$pAs( 1 5 t 4 +  14s2f2 -30t2u2+2s2u2 - s4) 
+$pi2sfu(9r2 - 8 ~ ' )  
&(pss + pAf ) [ s4+4s2 t2  -6u2(s2+ t 2  - U')+ f4] -&pI2u(89u4+ 15s2r2 -200u2r2+90r4)  

4 1  

4 2  

From equation (65)  and linearity, it is seen that for odd k 

Once the W;;. for odd k has been determined then from (65)  one can determine W i i l p s .  
However, it is more convenient to define 

where k " =  k - 2 .  The b[k:"9r"1 are tabulated in table 5. They are independent of k' and 

Table 5. Table of b\$".'"]. 

k l  k " I "  0 0  

k" I" 2 0  2 1  

k" I" 4 0  4 1  4 2  
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are related to the a:; by 

where a&, 

and 5 that one recovers equations (37)  and (70) .  Moreover, one may obtain 

tIr, corresponding to the overall normalisation of the wavefunction. 
To illustrate these results it is seen from equations (66) ,  (71)-(73)  and tables 1 ,  4 

p 1 2 ( T - 2 2 )  [ 6 p & ( r 2  - u 2 ) + 6 p s p 1 2 u ( r 2  - u2)+p:s ( s2 -9 t2 )  +pSpl2u3 
3 6 ~  *31 = 

and 

.\It:, = ( p 1 2 ( 5 7 T - 1 4 )  (psa:,  - 2 p A a : o ) [ r 4 - 8 r : r : + 2 ( r 2 - ~ 2 ) 2 ]  
3 0 ~  

In equation (76)  the a:, and a:, are arbitrary coefficients ( 0  3.5) corresponding to the 
independent particle states nlsn2s 3S and nlpn2p IS, respectively. 

For the H I S ,  equation (74 )  agrees with Ermolaev (1961). However equation (75)  
differs slightly from that given by David (1975), (76)  differs from Ermolaev (1968) and 
is exactly half that obtained by Pluvinage (1982). These results have been closely 
checked using the computer algebra system S M P  (Wolfram 1985) and the earlier results 
are incorrect. From tables 1 ,  4 and 5 ,  ?&,. for k S 6 ,  k ' s 6  may be determined. The 
extension to higher k, k' is straightforward but tedious. A tabulation of all the known 
Fock coefficients is given by Abbott (1986). 

5.2. Reduction of the equation for W20 to simplest form 

From the discussion of 09 4.2 and 4.3.1 one may write 

*20 = A20Y20+A21 Y2l +p2+x20 (77)  

where A,, and Azl are arbitrary coefficients, analogous to aio  and ail ,  P2 is defined 
by (59)  and x20 is presently undetermined. Following 0 4.2, the constants in P2 may 
be determined by substituting (77)  into the F R R ( ~ ~ ) .  Realising that two of the 
coefficients, here chosen to be Cllo and COo2, are related to the arbitrary coefficients 
(as they multiply the H H  of order 2) ,  one only has to determine C200, CozO, C,,, and 
Col,. One finds that 

(78a)  

c o 2 0 = i % p ; +  p : + t p ; 2 - E  - 3 p i p z ) .  (78b)  

c200 = h(k: + pi +ip:2 - E + 3CL1p2) 
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yields 

( A ~  - 12)x$,) = 8'€'21+ F , z F s ( ~ ~ ~  el + COS e,) + C L , ~ ~ ~ ( C O S  el -COS e*). (82) 

For the HIS,  equation (82) has been given by Ermolaev (1961), David (1975) and 
Pluvinage (1982). It is emphasised that, from (77), (79) and (81 ) ,  and xi:) are 
simply related by 

X::)=~F12U(FLSS+CL*t)+X:bg). (83) 

Equations (80) and (82) may be solved by expanding both sides in H H .  The 
inhomogeneous term in equation (80) is simple but not finite for r l ,  r2 or r I 2 = 0 .  
Expansion in H H  is thus slowly convergent. However, if one can algebraically sum 
the expansion of xi:) in HH,  obtained by solving (80), slow convergence is immaterial. 
The advantage of examining (80) is that its expansion is simpler than that associated 
with (82). For the HIS,  the expansion of (82) is given by David (1975) but his results 
can be simplified, as in the general case described in the following section. Pluvinage 
(1982) solved (82) for the H I S  by expansion, not into H H ,  but into a region-dependent 
series of SPC. This method is discussed in 11. 

5.3. Solution of 1y20 

As discussed in 9 5.2 we will solve Jr2 ,  by expanding (80) in HH.  Consider 

where Y,r are the unnormalised H H .  From (12), (54) and (55 )  

= ?(a, 6) Y d a ,  0) dfl. I 
Following White and Stillinger (1970) it is usual to write 

However, this region-dependent expansion can be avoided by following Sack (1964), 
who expands an arbitrary function f( r, ,)  into a region-independent expansion. 
Equation (86) becomes (there is an error in Sack, equation (27a)) for v >  -2 
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The integral over 6 in (85) is now trivial and from the orthogonality of the Legendre 
polynomials 

; sin's]} da .  
112 +a, 112 + a  

1 + ;  
(cos a/2*sin L Y / ~ ) ~ F ,  

The term in {. . . } ,F(a) ,  is simplified by theorem VI in Slater (1966, p 78) ,  which may 
be written in the elegant form 

’ z]. (88) b, b + f  a + b, a + b + 4 
2 a + l  2 a + 2 b + l  ’ 

Srivastava and Manocha (1984, p 200) show how a GHS is decomposed into even and 
odd powers 

Thus 

u)/2,1- u/2 * uz2F1[(’- 2 (89) 

and hence we see that for the symmetric (+) case 

cos (a /2)+s in  ( a / 2 ) = ( 1 + s i n  a)”’ 

implies that 

(1+1)/2,1/2+1 
; sin’ a +f sin a2F, 1/23 ( I +  1)/2 1 [ 1+2 

For the antisymmetric (-) case we first apply Euler’s transform (Rainville 1960, p 60) 
to the ’F1 in (87) yielding 

; sin2 a . 1 ; sin2 a ]  = lcos &I2.[ 1/2+:, 1/2+$ 
I + ;  

(91) 
Since 

(cos(a/2)-s in(a/2))~cos a l = c o s  a(1-s in  

then from (87)-(89) and (91) 

1 (1+1)/2,1/2+1 
f - ( a ) = c o s a ( , F , [  1 + 1  ; sin’a 

- 4  sin a2F,  
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(87) may be evaluated. For conciseness only D:, will be examined and the modifications 
required for D,I are indicated. 

Writing T ( a )  as an infinite series one obtains integrals of the form (Gradshteyn 
and Ryzhik 1980, p 826) 

J': sinZ0+laCp)(cos a )  d a  = (1 - x')~C(~Y)(X) dx I', 
for n even. Fo r f - ( a )  the analogous integral contains xC',"'(x) and may be put in the 
form of (92) using the recursion formula (Gradshteyn and Ryzhik 1980, p 1030) 

XC',"'(X) = ~ [ ( n + l ) C ' , " ~ , ( x ) + ( 2 v + n - l ) C ~ ~ , ( x ) ] .  
2 ( u + n )  

Hence 

for n odd. Utilising (90) and (91), (87) may be evaluated yielding 

where m = n/4- 112. The second 3F2 in (93) is a terminating sum. The first may be 
transformed into a finite series (Abbott 1986) 

where pFq[.  . .I,, denotes the partial sum to n terms of pFq[. . .]. We have one simple 
check on these results. The inhomogeneous part of equation (80) cannot contain any 
H H  of degree n = 2 since these are solutions to the liomogeneous equation. From (70), 
(80) and (84), the symmetric terms are 

7r-2) 

However, from (93) and (94), Dzl = 4( T - 2)/ .TT and hence the contribution of YZl due 
to (84) cancels exactly with that in Y2]  as required. Analogously, for the antisymmetric 
case, one finds that Dy1 = 2( 7r - 2)/ 7r also cancels with Y21.  In summary, equation 
(80) may be written 
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where the prime indicates that n = 2 is omitted from the summation. It is seen from 
(21) that 

[A2 - 121 Ynf = (n - 2)( n + 6) Ynf 

and hence equation (95) may be inverted to yield 

Since the D$ are finite series, we have derived a series expansion for x20 with easily 
computable coefficients. This may be compared with David (1975) who obtained the 
coefficients in the expansion of xzO as a doubly finite sum. A numerical check showed 
the equivalence of the two treatments. 

Note that (96) requires a double summation and for numerical work the convergence 
will be slow due to the presence of the Legendre and Gegenbauer polynomials. In 
§ 5.4 equation (96) is reduced to a single summation, using series rearrangement and 
equation (52), improving convergence. The reduction is completed in 11. 

5.4. Reduction of Pz0 

For compactness we write x = cos a, y = sin a. Using elementary series rearrangement, 
(A3), (12) and (93) the double summation in (96) may be written 

oc c Pf(C0S @)Y’Uf(X, Y )  
f = O  

where 

In (97), 8f,l arises because n = 2 was excluded from equation (96). Restricting attention 
to the symmetric piece of (97), we examine 

+ - % P I 2  f 0.L + 21, I 
U{ = ci:l)(x). 

3 m=6, , ,  ( 2 m + l - l ) ( 2 m + l + 3 )  

The reduction of (98) requires the expansion of general functions into Gegenbauer 
polynomials. This includes an extension of § 8.92 of Gradshteyn and Ryzhik (1980). 
Details are given in the appendix. The U:, given by (A19), (A22) and (A24) are 
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Also 

Combining equations (77),  (78), (79) and (96), one obtains 

W O  = A2l ( r 2  - r:2) + PlP2rl r2 + f P s P l z ( r l +  r2Ir12 

+ i r 2 ( p :  + + & f 2  - E ) 
a3 

+ c P,(COS @ ) Y ' C + : ( X ,  Y ) .  
I = O  

Using (83) and (99) it may be shown that equation (100) is equivalent to the result 
obtained by Pluvinage (1982). Moreover, Pluvinage proves the absolute convergence 
of ( loo) ,  hence justifying the series rearrangement. In 11, it is shown that equation 
(100) may be reduced to a finite sum of special functions. 

It is important to note that the c+: must have continuous derivatives with respect 
to rl  and r 2 ,  across the boundary rI = r 2 ,  to satisfy Hermicity (Davis and Maslen 1982). 
It is apparent that 1x1, a and r have discontinuous derivatives. However, it may be 
shown that these discontinuities cancel exactly. 

All algebraic expansions in I and I1 were evaluated and checked with the aid of 
the algebraic computing package Symbolic Manipulation Program ( SMP) ,  available 
from Inference Corporation (Wolfram 1985). Where possible, numeric checks were 
also carried out. 

6. Conclusions 

The hyperspherical formalism for solving the N-electron SE has been introduced and 
the case N = 2 is examined in detail. The relationship between the H H  and the excited 
states has been made explicit. 

Expansion of the wavefunction into a generalised power series PHE,  where the 
logarithmic function is formally homogeneous of degree zero, leads naturally to the 
FE. Examination of the derivation reveals the link between treatments of P H E  in 
alternate sets of internal coordinates. The particular case of HC is treated in detail. 
This connection is of prime importance since each system of internal coordinates is 
advantageous for studying particular aspects of the many-particle wavefunction. For 
example, the connection between the H H ,  excited states and arbitrary coefficients is 
best treated using HC, whereas the polynomial pieces and the asymptotic form are 
transparent in I C  or EC, whilst the wavefunction is most simply solved in SPC. 

The FE has been solved to second order and the expression simplified by partial 
summations. However, the final reduction is complicated and does not give a hint to 
the reduction for higher orders. This difficulty of HC is reduced by working with the 
P H E  expansion in SPC (as described in 11) and may be reduced further by alternative 
techniques (as described in Gottschalk and Maslen 1987). 

Logarithmic terms in the exact helium wavefunction have been given to sixth order 
and the extension to higher orders is straightforward. Moreover, simple polynomial 
terms appearing in all orders are demonstrated and their identification reduces the 
complexity of the differential recurrence relation. 
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Appendix 

Al.  Expansion of G H S  of sin a, cos a into C!",'(cos a )  

Put x = cos a, y = sin a, and require n, m, k non-negative integers; p and v real. From 
Rainville (1960, p 283) 

For n even we reverse the order of summation (Slater 1966, p 47) to obtain 

By series rearrangement, utilising Rainville (1960, p S6),  we have for an arbitrary 
function f 

n = O  m=O n = O  m=O 

where the second summation of ( A 3 a )  and ( A 3 b )  vanishes for k = 0. Using ( A 2 )  and 
( A 3 )  one obtains 

In particular, using Gauss's theorem (Slater 1966, p 243) 

yp  = (1 - X2)P'2 

=lFo[ -P/2.  - , x q  

Using ( A 3 )  and (AS) one obtains 
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Since C$”,’x) is an even function of x,  no expansion of x2”+l  exists. However, from 
(A6) one may show that 

and moreover that 

. 1 C:yd(X). 1 ( a ) ,  n +;, n + 1 
p + 2 F q + 2 [  ( b ) ,  n +; - m, n + m + v +;’ 

When ( a )  = 0, (A8) reduces to (A7). Furthermore, it is straightforward to show using 
(A3), (A5) and (A6) that 

( a  ), n + $, n + v + 1 
p + 2 F q + 2 [  ( b ) ,  n +;- m, n + m + v +$’ 

and after some effort 

In the special case n = 0, (A10) reduces to (A6) and for ( a )  = 0, (A9) and (A10) agree 
with (A5). Note that, since the Legendre polynomial is just a special case of the 
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Gegenbauer polynomial by way of the relation P,(x) = C;’’)(x), the results above 
generalise those given in Gradshteyn and Ryzhik (1980, pp 1027-9). The correspon- 
dence is 

(AI), (A2) + 8.922 (11, (2) 

(A4)+ 8.922 (3), (5) 

(AS) + 8.925 (2), (4) 

(A6) + 8.928. 

These relationships provide an additional check on the validity of (Al) ,  (A2), (A4)- 
(‘46). 

A2. Expansion of functions of p = r, /  r> 

Using Abramowitz and Stegun (1972, p 556) 

1 - ] X I  - 1 -(1 -y2)1’2 = Y 2 F ‘ [ i ;  ‘ 1  ; 
2 p=- -  

Y Y 

Applying (88) n times one obtains 

2 a + l  

and from ( A l l )  we have 

Furthermore from (A3) and (A13) 

ln( l+p’)=p’2Fl [1~1;  p’] 1 1 ’  ’ ’ 2 ;  y’]. 
2,2 

Expansion of (A13) and (A14) may be accomplished by use of equations (A9) and (A10) 

where 

; 11). 
p / 2 +  m +i, p / 2 +  m + 1,1 

U +2m +;, 
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Use of (A6) and (A13) yields 

When p = 0, (-p)k = 8k.O and (A16) gives the expansion of p2"+' which agrees with 
(A9) and (A13). For p a non-negative integer, the sum over k in (A16) is finite. 
Moreover, the hypergeometric series in (A15) and (A16) may be transformed into 
finite summations by standard techniques (Abbott 1986). 

A3. Reductions required for U :  

The reductions required relate to three special cases. 

A3.1. 1 = 0. For I = 0, from (Al )  

(A17a) 

(A176) 

(A17c) 

(A17d) 

The derivation of (A17e) uses the contiguous relations for GHS (Rainville 1960, p 80). 
By reducing equation (93) to its simplest form it may be verified that 

( 2 m  - 1)(2m +3)  - 3 ~  ($)m 6(4)m($)m 6 r ( f ) m ( $ ) m  

D4+mo -_-- -1 ( - f ) m  ( - f ) m ( i ) m +  (-lIm(-f)m(t)m 

and hence from (A17) and (A18) 

- 1x1 In(1- x2) . 1 (1 - 2y2)(Y = I*SCL~Z [ y + 2 +  x ln( k) - 1x1 + 
13, Y 
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A3.2. I = 1. For I = 1, from (Al)  and (A2) 
io 

p =  2 s:lc::(x) 
m = n  

s 

p3= s[,'lc:';(x) 
m = n  

(A20a) 

(A20b) 

(A20c) 

(A20d) 

(A20e) 

where in (A20e)  we have used 15.1.6 from Abramowitz and Stegun (1972, p 556) yielding 

and hence from (A20) and (A21) we have 

-P P 2  P 3  [(I  +2y2)lxla/y - 11 -+---+In( 1 + p 2 )  + 
3 4 2 12 T Y 2  
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It may be verified that 

D4:, +2/ , /  

(2m + I -  1)(2m + I+3)  

2S[f-'.f+lI S[I,f+ll 2 9  1 . 1 -  1 , / +  I 1  S[O.f,f+ll  

I 
+-+ 

( I +  1)(1+2) -4 ( 1 +  1) -( I;-1) 

and hence from (A15), (A16) and (A23) 

+ 2 1 - ~ ~ ~ ~ 1 2 { ( 1 + P 2 ) 1 - l [ ( 1  2 ) P P 2  ( 2 
1 ) .3 I I - 1  +1+1-1+ 1+2-1+1 U {  = 

3 
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